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Abstract. The generalised E x E Jahn-Teller Hamiltonian is treated in configuration space 
using polar coodinates. The expansion in radial oscillator states leads to simple recurrence 
relations. These are equivalent to a system of two ordinary linear first-order differential 
equations. The isolated exact solutions are polynomials multiplied with a exponential 
function in this formulation. They are also calculated in configuration space. The connec- 
tion of the present treatment with Reik’s treatment is established. This leads to a new 
understanding of Reik’s Neumann series expansion. 

1. Introduction 

Recently, a new method of treating the generalised E x E Jahn-Teller Hamiltonian 
was suggested by Reik et al (1982) and Reik (1984). The Hamiltonian 

which reduces for A = O  to the E X E  Jahn-Teller Hamiltonian, was formulated in 
Bargman’s Hilbert space of analytical functions. The Schrodinger equation is a system 
of linear first-order differential equations in this formulation. The energy eigenvalues 
are determined by the requirement that the solutions of the above system of differential 
equations are entire functions. The solution of this problem was given in terms of a 
Neumann series expansion. It was shown that for particular values of the interaction 
constant K the Neumann series expansion terminates. These terminating Neumann 
series correspond to the isolated exact solutions (Judd 1979). The general case was 
solved using a rapidly converging continued fraction procedure. 

In this paper, we will give a different treatment of the generalised E x E Jahn-Teller 
Hamiltonian (1.1). In 9 2, we will introduce polar coordinates and expand the vibronic 
part of the wavefunction in a radial oscillator basis. This leads to simple recurrence 
relations, which are equivalent to a system of linear ordinary differential equations of 
Jirst order. These equations are manipulated in § 3 to find the isolated exact solutions 
in our treatment. The essential point is the extraction of an exponential function from 
the wavefunctions. This new system of differential equations is connected to the system 
of differential equations in Reik’s treatment by a series of manipulations containing a 
Laplace transform (Reik et a1 1981). In this formulation, the isolated exact solutions 
correspond to a terminating power series expansion. For this reason, we are interested 
in the wavefunctions in configuration space which correspond to the powers r “ .  These 
functions, which we call SL(d, p, K ) ,  form a complete (but not orthogonal) set and are 
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given explicitly in 9 3. The isolated exact solutions in configuration space are given 
by a finite sum of the functions S',(C#I, p, K ) .  In 9 4, the correspondence between the 
present treatment and Reik's treatment is established. It turns out that the Neumann 
series expansion can be immediately transformed to the configuration space. 

2. The treatment of the Hamiltonian in polar coordinates and expansion of the 
eigenstates in the radial oscillator basis 

We now introduce polar coordinates 

qA = r cos 4 

qB = r sin 4 

to treat the Hamiltonian (1.1). In the new coordinates, the Hamiltonian is 

Further we introduce the new Hamiltonian H = H ' / h w ,  the new constants K = k / 2 w 0  
and 8 = :(A - w o ) / w o  and the new coordinate p = mw,]r/  h. The Hamiltonian H is now 
given by 

in dimensionless units, where s= (28 ++). The constants are chosen to achieve agree- 
ment with Reik's treatment. The total angular momentum 

1 = - i (a /a+)  ++U: (2.4) 

is a constant of the motion. Thus the operator I commutes with the Hamiltonian 

{I, H } = O  ( 2 . 5 )  

as can be easily seen. Therefore, the eigenstates of H can be labelled with the 
eigenvalues of I. 

Consider now the eigenvalue problem 

(2 .7)  

where F ( p )  and G ( p )  are not determined. The spectrum of I is obtained by the 
requirement that the states should not change when replacing 4 by 4+2n-. 
For this to be true, j must be a positive or  negative integer. The Schrodinger equation 
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gives, after collecting the spin-up and spin-down components, the following system 
of coupled ordinary differential equations of second order: 

(2.10) 

Note that equations (2.1 1) are reproduced by the simultaneous transformations 

j + - j - l  

6 + - 6  
- - 

f ( f )+  g ( r )  

g( 1) - f (  f ). 

(2.12) 

For this reason, it is sufficient to solve the problem for j 3 0. F o r j  3 0, equations (2.1 1) 
become 

(2.13) 

To solve the equations, let us remark that for K = 0 and 8= 0 the Hamiltonian H simply 
describes a two-dimensional harmonic oscillator. For the eigenstate with angular 
momentum j and energy 2n + j + 1 we have 

f ; , , ( t )  = c,, , F l ( - n , j +  1 , f ) .  (2.14) 

Here c,, is a normalisation constant and ,I=,(-n,j+ 1, t )  is a confluent hypergeometric 
function. We now expand the eigenfunctions in the general case with respect to the 
described oscillator states, which surely form a complete set of functions: 

(2.15) 
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The insertion of (2.15) in (2.13) leads to the recurrence relations 

[ - ;(j + 1 ) + f( A - 8) - ( n + 1 ) ]U, ,+ ,  - K ( j  + 1 ) b,+ = - K ( j  + 1 b, 
(2.16) 

( j +  1 + n) 
a, + [ $ ( j  +2) -$(A + 8) + n]b,. ( n + l )  

( ,+I)  ( j+  1) 
K- 

We have made use of the formulae 

d t  

(2.17) 

( j  + l) ,Fl(-n,  j + 1, t )  = - n,F,( -n  - 1, j + 2, t )  + ( j  + 1 + n),F,( -n, j + 2, t )  

t lF1(-n, j+2,  t )  = ( j + l ) [ , F , ( - n , j + l ,  t ) - , F , ( - r z  - l , j + l ,  t ) ]  

to arrive at (2.16). Note that the recurrence relations (2.16) terminate for negative 
values of n ( U - ,  = b-, = 0, i = 1 ,2  . . .) when the initial condition 

(2.18) [ - ;( j + 1) +;(A - 8 ) ] a o  - K ( j  4- 1) bo = 0 

is valid. They can be formed to 

where 

Mll(n)  = ( n  + 1 + j ) / ( n  + 1) 

( n  + J +  1 )  

( n + l )  , 

det M ( n )  = 

(2.19) 

(2.20) 

Since j 2 0, det A%( n )  f 0 for n = 0, 1 , 2 , .  . .. Therefore the recurrence relations (2.16) 
do not terminate for positive values of n. There are two solutions of (2.19) with different 
behaviour for large n :  

n -Tr f i ( n ) - - - ~  
K 

det $ ( n )  K' 

Tr M ( n )  n 

(2.21) 

Only the second solution is the physical solution, since the expansion (2.15) must be 
convergent. This solution can be obtained using a continued fraction procedure which 
is described in detail by Reik et a1 (1982). 
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3. Isolated exact solutions in configuration space and expansion of the eigenstates in a 
new basis 

The recurrence relations (2.16) are equivalent to the following system of ordinary 
differential equations of first order: 

This can be seen when f (  w) and g( w) are written as a power series of the complex 
variable w: 

(3.2) 

In other words, the power series expansion (3.2) corresponds to the expansion of the 
vibronic components of the wavefunction in a radial oscillator basis. Note that equation 
(3.1) is now a system of differential equations ofJirst order in contrast to the Schrodinger 
equation (2.9) in configuration space. 

The behaviour at large n of the physical solution in (2.21) suggests the ansatz 

f ( w )  = exp(-K2w)J(w) 

g( w) = exp(-.'w)fj( w) 

for the solution of (3.1). This leads to 

K ( j + l ) ( l -  w)g'(w)+ 

dw 

(3.3) 

(3.4) 

+ K ( w -  1)-+K(j+1+K2-K2w)J(w) d f  =o. 
dw 

We now put -K2w=r, ( j + l ) g ' ( w ) = x 2 ( r ) ,  f ( w ) = x l ( r )  and A = u + 1 / 2 - 2 ~ ~ .  The 
complex variable r just introduced should not be confused with the radius r introduced 
by equation (2.1). Furthermore, we multiply the first equation in (3.4) with K and 
subtract it from the second equation in (3.4). The result is 

( K  + r / ~ ) x ~ (  r )  + r(d/dr)x,(  r )  - ( - K  - t j  - $8- ; + t u  - r ) x , (  r )  = 0 

r(d/dr)x2(r)  - ( - i j +  8-$+;u)x2(r) + ~ ~ ( d x , / d r )  + K ( f j  - ;8+$+iu)x,(r)  = 0. 

These are exactly the equations obtained by Reik et a1 (1981) for s=O using a very 
different method. It was shown that a power series expansion for x l ( r )  and x2(r)  
terminates for particular values of the coupling constant K .  These terminating power 
series exhaust all classes of isolated exact solutions. We are now going to calculate 

(3.5) 
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the state in configuration space which corresponds to the power r". Remember the 
correspondence 

rn  - ( - K ' w ) "  exp(-K'w) (3.6) 

w n  -etJdp' e x p ( - p 2 / 2 ) , ~ , ( - n , j +  1, p ' )  (3.7) 

w n  -exp[i( j + 1 ) 4 ] p J + '  e x p ( - p 2 / 2 ) , ~ , ( - n ,  j + 2, p ' )  (3.8) 

for the spin-up component and 

for the spin-down component. We restrict ourselves now to the case of the spin-up 
component. (The spin-down component case is obtained by replacing j by j +  1.) 

Since 
X 

( - K ' W ) n  eXp(-K'W)= 1 ( - K 2 ) u + n W n + u / V !  
" = O  

we have to calculate the series 
X 

[ ( - K * ) " + " / v ! ]  e"dpJ e x p ( - p 2 / 2 ) , ~ , ( - ( n +  v ) , j + l ,  p2) .  
" = O  

For n = O  this is simple and we find the correspondence 

ro-exp( - ~ ' w )  -et"[j! exp( -K')/K'] exp( - p 2 / 2 ) 4 ( 2 ~ p ) .  

Here 1 , ( 2 ~ p )  is the j t h  modified Bessel function. 
To proceed in the case n f 0, we make use of 

to write 

( - K Z W ) n  eXp(-K'w)=- 6 ' " ' ( p )  e x p [ i w ( p + i ~ ~ ) ]  dp. 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

Using the correspondence (3.11) for i (p+iK2) instead of - K '  we find, after some 
algebra, 

r" -(-K'w)" exp(-K'w)- n!j!(-1)"K2"-/ 

(3.14) 

We now introduce the notation 

(3.15) 

Since limp+o S', - p' and 

the functions S i ( 4 ,  p, K )  do belong to the Hilbert space. Further, they form a complete 
but not orthogonal set because of their construction from the radial oscillator states. 
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The power series expansion of x , ( r )  and x z ( r )  corresponds to the expansion of the 
vibronic component of the wavefunction in configuration space with respect to the 
complete set of functions Si(C$, p ,  K).  Let us conclude this section with the remark 
that the isolated exact solutions are given in configuration space by a finite superposition 
of the functions SJ,(4, p ,  K ) .  

4. Connection of the present treatment with Reik’s treatment of the generalised E x E 

Jahn-Teller Hamiltonian 

In Reik’s treatment (Reik et a1 1982), the Schrodinger equation is formulated in 
Bargmann’s Hilbert space of analytical functions. It was shown that the eigenvalue 
problem can be formed to the problem of finding entire functions 4(  z) and f (  z), which 
are a solution of the coupled differential equations 

K (2 + C$ ( L ) )  + 2- df  - ( E  -k 6 )f( Z) = 0 
dz 

where E = + ( A  - j  -:). Equations (4.1) are connected with equations (3.5) by a series 
of manipulations, which include a Laplace transform. This series of manipulations is 
given by Reik et al (1981) for 6 = -a .  For general values of 6 it is not changed. When 
a power series expansion of x l ( r )  and x z ( r )  is transformed back, a Neumann series 
expansion of C$( z)  andf(z)  is obtained. It was found that the following correspondence 
exists: 

(4.2) I n  +I ( 2 K J Z  ) r n  * Z ( n - J l i Z  

for the spin-up component and 

I n  +,+ I ( 2 K J Z  ) ).n * Z [ n - D + l ) l / 2  (4.3) 

for the spin-down component. Due to the results of 0 3 (equation (3.14)) we have now 
established the correspondence 

Z (  J’21n (2KJZ) (JTj ! ) - I  s’, ( 4, p, K ). (4.4) 
The constant (Jr j ! ) - ’  was included to achieve coincidence in normalisation of both 
functions. Therefore the solution given by Reik er al (1982) in terms of a Neumann 
series expansion can be immediately transformed to configuration space with the help 
of (4.4). 

5. Discussion 

We have presented the treatment of the generalised E x E Jahn-Teller Hamiltonian in 
polar coordinates. The crucial point is that the expansion of the vibronic part of the 
wavefunction in radial oscillator states leads to the simple recurrence relations (2.16). 
These are equivalent to the system offirst-order differential equations (3.1). After the 
extraction of an exponential function from the wavefunction, the isolated exact solu- 
tions are found and the relation to Reik’s treatment is given. Because of relation (4.4), 
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the Neumann series expansion for the solution of the system of differential equations 
(4.1) leads to the same ‘algebra’ as the expansion of the vibronic part of the wavefunction 
in terms of the complete set of functions (dr j ! ) - *Si (4 ,  p, K )  in configuration space. 
This ‘algebra’ can be used for a solution of the general problem in terms of a continued 
fraction procedure. Since this procedure has been worked out in great detail (Reik et 
af 1982, Reik 1984) and the corresponding results presented, we do not repeat it here. 

The main purpose of this paper is to illuminate the rather formal Neumann series 
expansion in the light of the presented treatment in configuration space. We have seen 
that the nth term in the Neumann series expansion corresponds to a series of radial 
oscillator states, starting with the state of energy 2n + j +  1 (see (3.14), (3.15) and (4.4)). 
Since this series can be calculated analytically (see (3.14)), the present treatment gives 
some information about the behaviour of the vibronic part of the wavefunction in 
configuration space. 
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